gianlp.keras_layers.masked_embedding.MaskedEmbedding

class gianlp.keras_layers.masked_embedding.MaskedEmbedding(*args, **kwargs)

Bases: Embedding

Special class for a masked at 0 embedding. It guarantees that the index 0 always maps to a vector of zeros.

Parameters
  • input_dim – Size of the vocabulary, i.e. maximum integer index + 1.

  • output_dim – Integer. Dimension of the dense embedding.

  • **kwargs

    extra arguments to pass to Embedding init

Methods

add_loss

Add loss tensor(s), potentially dependent on layer inputs.

add_metric

Adds metric tensor to the layer.

add_update

Add update op(s), potentially dependent on layer inputs.

add_variable

Deprecated, do NOT use! Alias for add_weight.

add_weight

Adds a new variable to the layer.

build

Creates the variables of the layer (for subclass implementers).

build_from_config

Builds the layer's states with the supplied config dict.

call

Wraps the original call for guaranteeing masking :param inputs: inputs to forward the layer :return: output of the forward pass

compute_mask

Computes an output mask tensor.

compute_output_shape

Computes the output shape of the layer.

compute_output_signature

Compute the output tensor signature of the layer based on the inputs.

count_params

Count the total number of scalars composing the weights.

finalize_state

Finalizes the layers state after updating layer weights.

from_config

Creates a layer from its config.

get_build_config

Returns a dictionary with the layer's input shape.

get_config

Returns the config of the layer.

get_input_at

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at

Retrieves the input shape(s) of a layer at a given node.

get_output_at

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at

Retrieves the output shape(s) of a layer at a given node.

get_weights

Returns the current weights of the layer, as NumPy arrays.

load_own_variables

Loads the state of the layer.

save_own_variables

Saves the state of the layer.

set_weights

Sets the weights of the layer, from NumPy arrays.

with_name_scope

Decorator to automatically enter the module name scope.

Attributes

activity_regularizer

Optional regularizer function for the output of this layer.

compute_dtype

The dtype of the layer's computations.

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

losses

List of losses added using the add_loss() API.

metrics

List of metrics added using the add_metric() API.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

Sequence of non-trainable variables owned by this module and its submodules.

non_trainable_weights

List of all non-trainable weights tracked by this layer.

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

trainable

trainable_variables

Sequence of trainable variables owned by this module and its submodules.

trainable_weights

List of all trainable weights tracked by this layer.

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

call(inputs)

Wraps the original call for guaranteeing masking :param inputs: inputs to forward the layer :return: output of the forward pass