gianlp.models.text_representations.per_chunk_sequencer.PerChunkSequencer
- class gianlp.models.text_representations.per_chunk_sequencer.PerChunkSequencer(sequencer: TextRepresentation, chunker: Callable[[str], List[str]], chunking_maxlen: int)
Bases:
TextRepresentation
Per chunk sequencer wrapper For each chunk creates a sequence using the text input provided
- Variables
_chunker – function used for chunking the texts
_sequencer – text input use for sequencing each chunk
_chunking_maxlen – the maximum length in chunks for a text
- Parameters
sequencer – TextInput object
chunker – function for chunking texts
chunking_maxlen – the maximum length in chunks for a text
Methods
Builds the whole chain of models in a recursive manner using the functional API
Deserializes a model
Parallelizable wrapper for the tokenizer
Given texts returns the array representation needed for forwarding the keras model
Serializes the model to be deserialized with the deserialize method
Function for tokenizing texts
Attributes
Method for getting all models that serve as input.
Returns the shapes of the inputs of the model
Returns the output shape of the model
Computes the total amount of trainable weights
Computes the total amount of weights
- preprocess_texts(texts: Union[List[str], Series]) Union[List[ndarray], ndarray]
Given texts returns the array representation needed for forwarding the keras model
- Parameters
texts – the texts to preprocess
- Returns
a numpy array of shape (#texts, _sequence_maxlen)
- build(texts: Union[List[str], Series]) None
Builds the whole chain of models in a recursive manner using the functional API
- Parameters
texts – the texts for building if needed
- classmethod deserialize(data: bytes) BaseModel
Deserializes a model
- Parameters
data – the data for deserializing
- Returns
a BaseModel object
- static get_bytes_from_model(model: Model, copy: bool = False) bytes
Transforms a keras model into bytes
- Parameters
model – the keras model
copy – whether to copy the model before saving. copying the model is needed for complex nested models because the keras save/load can fail
- Returns
a byte array
- static get_model_from_bytes(data: bytes) Model
Given bytes from keras model serialized with get_bytes_from_model method returns the model
- Parameters
data – the model bytes
- Returns
a keras model
- property inputs: ModelInputsWrapper
Method for getting all models that serve as input. All TextRepresentation have no models as an input.
- Returns
a list or list of tuples containing BaseModel objects
- property inputs_shape: Union[List[ModelIOShape], ModelIOShape]
Returns the shapes of the inputs of the model
- Returns
a list of shape tuple or shape tuple
- property outputs_shape: ModelIOShape
Returns the output shape of the model
- Returns
a list of shape tuple or shape tuple
- static parallel_tokenizer(text: str, tokenizer: Callable[[str], List[str]], sequence_maxlength: Optional[int] = None) List[str]
Parallelizable wrapper for the tokenizer
- Parameters
text – the text to tokenize
tokenizer – the tokenizer
sequence_maxlength – optional sequence maxlength.
- Returns
a list of lists with string tokens
- serialize() bytes
Serializes the model to be deserialized with the deserialize method
- Returns
a byte array
- static tokenize_texts(texts: Union[List[str], Series], tokenizer: Callable[[str], List[str]], sequence_maxlength: Optional[int] = None) List[List[str]]
Function for tokenizing texts
- Parameters
texts – the texts to tokenize
tokenizer – the tokenizer
sequence_maxlength – optional sequence maxlength.
- Returns
a list of lists with string tokens
- property trainable_weights_amount: Optional[int]
Computes the total amount of trainable weights
- Returns
the total amount of trainable weights or none if not built
- property weights_amount: Optional[int]
Computes the total amount of weights
- Returns
the total amount of weights or none if not built